Dynamic Shortest Path Algorithms for Hypergraph:

J. Gad, Q. Zhad, W. Reri, A. Swamf, R.Ramanathah A. Bar-Noy
fUC Davis, *Microsoft, $Army Research LabfRaytheon BBN Technologie$City University of New York

Abstract—A hypergraph is a set V' of vertices and a set problems in graph theory remain largely open under this more

of non-empty subsets ofV/, called hyperedges. Unlike graphs, general model. In this paper, we address the shortest path
hypergraphs can capture higher-order interactions in social and problem in hypergraphs.

communication networks that go beyond a simple union of

pairwise relationships. In this paper, we consider the shortest A. Shortest Path Problem in Graphs
path problem in hypergraphs. We develop two algorithms for ')
finding and maintaining the shortest hyperpaths in a dynamic The shortest path problem is perhaps one of the most

network with both weight and topological changes. These two pasic problems in graph theory. It asks for the shortest path
algorithms are the first addressing the fully dynamic shortest panveen two vertices or from a source vertex to all the

path problem in a general hypergraph. They complement each . . . -
other by partitioning the application space based on the nature of other verticesii(e., the single-source version or the shortest

the change dynamics and the type of the hypergraph. We analyze Path tree). Depending on whether the edge weights can be
the time complexity of the proposed algorithms and perform negative, the problem can be solved via Dijkstra’s algorithm or
simulation experiments for both random geometric hypergraphs Bellman-Ford algorithm [2]. This basic problem finds diverse
and the Enron email data set. The latter illustrates the application apjications in communication networks, operational research,
of the proposed algorithms in social networks for identifying the . .
most important actor based on the closeness centrality metric. plant and fac"_'ty Iayo_ut, and VLSI design [3]. .
The dynamic version of the shortest path problem is to

. INTRODUCTION maintain the shortest path tree without recomputing from
ratch during a sequence of changes to the graph. A typical
ange to a graph includes weight increase, weight decrease,
edge insertion, and edge deletion. The last two types of
changes model network topological changes, but they can be
conceptually considered as special cases of weight changes by
8.Howing weight to be infinity. Thus, if the sequence of changes
contains only weight increase and edge deletion, we call it a
decremental problem; if it contains only weight decrease and
e insertion, we call it an incremental problem. Otherwise,
have a fully dynamic problem. If multiple edges change
ﬁHnuItaneously, then it is called a batch problem.
There have been a number of studies of the dynamic
ortest path problem in graphs. Ramalingam and Reps [4],
rigioni et al. [5, 6], and Narvaezet al. [7] proposed
several algorithms for the single-change problem. The batch
problem was considered in [7-9]. Comprehensive experiments
on the comparison of different batch algorithms can be found
in [9, 10].

A graph is a basic mathematical abstraction for modelirk
networks, in which nodes are represented by vertices and p
wise relationships are represented by edges between verti
A graph is thus given by a vertex sétand an edge sét con-
sisting of cardinality-2 subsets &f. A hypergraph is a natural
extension of a graph obtained by removing the constraint
the cardinality of an edge: any non-empty subsev’ afan be
an element (a hyperedge) of the edge/sésee Fig 1). It thus
captures group behaviors and higher-dimensional relationshr
in complex networks that are more than a simple union
pairwise relationships. Examples include communities a
collaboration teams in social networks, document cluster
in information networks, and cliques, neighborhoods, arﬁﬁ
multicast groups in communication networks.

B. Shortest Path Problem in Hypergraphs

Both the static and dynamic shortest path problems have
a corresponding version in hypergraphs. The static shortest
hyperpath problem was considered by Knuth [11] and Gallo
et al. [12], in which Dijkstra’s algorithm was extended to
obtain the shortest hyperpaths. Knuth's algorithm is for a
special class of hypergraphs while Gallo’s algorithm is for
a general hypergraph. Ausiellet al. proposed a dynamic
n%%ortest hyperpath algorithm for directed hypergraphs, con-
gldering only the incremental problem with the weights of
all hyperedges limited to a finite set of numbers [13, 14]. A

OThis work was supported by the Army Research Laboratory Ns-c7aynamic algorithm for the bat_ch problem in a special class of
under Grant W911NF-09-2-0053. hypergraphs was developed in [8].

Fig. 1. An example hypergraph with hyperedges:(v1,v2, v3, v6),
(UQ, v3,v4, ’U5), (’UG, v7, U8, Ug), and (U5,’U8, Ug).

While the concept of hypergraph has been around si
1920's (see, for example, [1]), many well-solved algorithmi

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2012 2. REPORT TYPE 00-00-2012 to 00-00-2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Dynamic Shortest Path Algorithmsfor Hypergraphs £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California, Davis,One Shields Avenue ,Davis,CA,95616 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A hypergraph isaset V of vertices and a set of non-empty subsetsof V , called hyperedges. Unlike graphs
hyper graphs can capture higher-order interactionsin social and communication networ ksthat go beyond
asimple union of pairwiserelationships. In this paper, we consider the shortest path problem in

hyper graphs. We develop two algorithmsfor finding and maintaining the shortest hyperpathsin a
dynamic networ k with both weight and topological changes. These two algorithms arethefirst addressing
the fully dynamic shortest path problem in a general hypergraph. They complement each other by
partitioning the application space based on the natur e of the change dynamics and the type of the

hyper graph. We analyze the time complexity of the proposed algorithmsand perform simulation
experimentsfor both random geometric hypergraphs and the Enron email data set. Thelatter illustrates
the application of the proposed algorithmsin social networksfor identifying the most important actor
based on the closeness centrality metric.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 11
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

With the exception of the above few studies, the shortesiat both proposed algorithms apply to directed hypergraphs
hyperpath problem remains largely unexplored. To the besith minor modifications in their implementation details.
of our knowledge, no algorithms exist for the fully dynamic A detailed time complexity analysis of these two algorithms
problem in a general hypergraph. is provided to demonstrate their performance in the worst-
In this paper, we develop two fully dynamic shortest patbase change scenario. Using a random geometric hypergraph
algorithms for general hypergraphs. These two algorithmsodel and a real data set of a social network (Enron email
complement each other, with each preferred in different typdata set), we study the average performance of these two
of hypergraphs and dynamics. algorithms in different scenarios and demonstrate the partition
Referred to as the HyperEdge based Dynamic Shortest Patlthe application space between these two algorithms. In the
algorithm (HE-DSP), the first algorithm is an extension of thexperiment with Enron email data set, the proposed algorithms
dynamic Dijkstra’s algorithm for graphs to hypergraphs (pasuccessfully identified the most important actor in this social
allel to Gallo’s extension of the static Dijkstra’s algorithm taetwork using the closeness centrality metric.
hypergraphs in [12]). The extension of the dynamic Dijkstra’s o
algorithm to hypergraphs is more involved than that of the: APplications
static Dijkstra’s algorithm. This is due to the loss of the tree Shortest path computations on hypergraphs can be applied
structure (in the original graph sense) in the collection of the communication as well as social networks. An example
shortest hyperpaths from a source to all other vertices. Siraggplication in wireless communications, in particular, for mul-
the dynamic Dijkstra’s algorithm relies on the tree structure tihop wireless networks, is impportunistic routingschemes
update the shortest paths after an incremental change (wemgith as EXOR [15], GeRaF [16], and MORE[17]. In such
increase or edge deletion), special care needs to be given whelmemes, any receiver of a packet is eligible to forward
extending it to hypergraphs. the packet. Receivers typically execute a protocol amongst
The second algorithm is rooted in the idea of Dimensiahemselves to decide who should forward it. This naturally
Reduction and is referred to as DR-DSP. The basic idealémds to a hypergraph model where a node and its neighbors
to reduce the problem to finding the shortest path in tlierm a hyperedge. The cost of each hyperedge can be defined
underlying graph of the hypergraph. The underlying graph ofteased on the cardinality of the hyperedge to capture the
hypergraph has the same vertex set and has an edge betvgeeness rate of forwarding (lower the cardinality, lesser the
two vertices if and only if there is at least one hyperedg#hance that at least one of the nodes successfully receives the
containing these two vertices in the original hypergraph. Theacket) and the associated overhead (higher the cardinality,
weight of an edge in the underlying graph is defined as thégher the energy consumption and the overhead in choosing
minimum weight among all hyperedges containing the twiie forwarding node). A shortest hyperpath from the source to
vertices of this edge. The shortest hyperpath in the hypergraph destination is thus a better route than merely the traditional
can thus be obtained from the shortest path in the underlyisigortest path. And as the network topology changes, a dynamic
graph by substituting each edge along the shortest path wadlgorithm is required to maintain the shortest hyperpath.
the hyperedge that lent its weight to this edge. The correctnesn social networks, information (results, event reports, opin-
and advantage of this algorithm are readily seen: the definitimms, rumorsgtc) propagates through diverse communication
of weight in the underlying graph captures the minimum costeans including direct links (e.g., gestures, optical, satcom,
offered by all hyperedges in choosing a path between twegular phone call), social media (e.g., Facebook, Twitter,
vertices, thus ensuring the correctness of the algorithm; thiegs), mailing lists, and newsgroups. Such a network may
reduction of a hypergraph to its underlying graph remové® modeled as a hypergraph with the weight of a hyperedge
many hyperedges from consideration when finding the shortesfiecting the cost, credibility, and/or delay for disseminating
path, leading to efficiency and agility to dynamic changes. information among all vertice of this hyperedge. In particular,
HE-DSP is more efficient in hypergraphs that are denselye weight of a hyperedge can capture the unique effect on
connected through high-dimensional hyperedges and for niite information after it passes through a group of people.
work dynamics where changes often occur to hyperedges tRat instance, a result can be discussed by overlapping blog
are not on the current shortest hyperpaths. DR-DSP has lowelaboration networks as it spreads, and often the discussion
complexity when hyperedge changes often lead to changeyields a better result than if it only spreads through individuals.
the shortest hyperpaths. This is usually the case in netwoilkse minimum cost information passing in social networks can
where hyperedges in the shortest hyperpaths are more prtne be modelled as a shortest hyperpath problem.
to changes due to attacks, frequent use, or higher priority inAnother potential application is that of finding the most
maintenance and upgrade. Furthermore, DR-DSP leads toimportant actor in a social network. Under a graph model of
alternative algorithm for solving the static shortest hyperpatiocial networks, the relative importance of a vertex can be
problem when the dynamic problem degenerates to the statieasured by its betweenness and closeness centrality indices.
problem. It has the same complexity as Gallo’s algorithifihe former is defined based on the number of shortest paths
for a general hypergraph and lower complexity for simplicidhat pass through this vertex, and the latter, the total weight of
complexes (a special class of hypergraphs whose hyperetlgeshortest paths from this vertex to all the other vertices [18].
set is closed under the subset operation). We also point déruta social network exhibiting hyper-relationships, between-

ness and closeness centrality, based on the shortest hyperpd&), + w,..,. We put® in a priority queué @, and the rest
would be better indicators of the relative importance of eadf the procedure is similar to Dijkstra’s algorithm: dequeue
actor. In Sec. VII, we apply the proposed shortest hyperpatie nodez with the minimum distance frond), update the
algorithms to the Enron email data set. We propose a weighstances of its neighbors, updafg by inserting the new
function that leads to the successful identification of the CE&¥fected vertices among the neighbors to Q and update the
of Enron as the most important actor under the closenassks of others based on the updated distances. The procedure
centrality metric. The distance of each person in the data gerates untilQ) is empty. A pseudo code presentation of the

to the CEO along the resulting shortest hyperpaths closddgsic steps is given below.

reflects the position of the person within the company. Graph: Weight Decreaséi, o, wyew)

Step0 (Update the graph)
[I. BACKGROUND ONDYNAMIC SHORTESTPATH 1 w(t,)+ Wew
ALGORITHMS FORGRAPHS Stepl (Determine the affected vertex in(u, 0))
2z argmingg, 1 {Dlgl} y < argmax. ;5 {Dlal}
In this section, we present the basic ideas of the dynami@ if D[z] + wyew < Dy] do

shortest path algorithms developed for graphs in [5]. Somé Dly] < D[2] + Wnew; Ply]
basic techniques in updating and maintaining the shortest Enqueu&?, (y, D[y]))
path tree will be borrowed in later sections when we develop end
dynamic shortest hyperpath algorithms. Step2 (lteratively update all affected vertices)
7 while NonEmpty(Q) do
) 8 (z, D[z]) + Dequeu€Q)
A. Dynamic Shortest Path Problem 9 for eachv € V st (z,v) € E

A changes on a graphG — (V, E) corresponds to one 12 it Dlv] > D[z] +w(z,v) then
edge modification. There are four types of changes: weigign Dlv] ¢ D(z) + w(z, v); Plv] « 2
increase, weight decrease, edge insertion, and edge deletign. Enqueue or Upda(®, (v, D[v]))
Weight increase and edge deletion can be similarly treat%ﬁ end, end, end
(with small differences in the required data structures Whih \neight Increase
will be omitted for simplicity), so can weight decrease and

- . - - onsider that the weight of edde, ©) increases tav,,c.,.
edge insertion. The dynamic algorithms are thus present ac) Ny L
only for weight increase and weight decrease. Again, assume thaD[i]] < D[i]. If (i,7) is not an edge

, in the shortest path tree, then none of the vertices will be
Given a graphC;, a source nods;, and a sequence Ofaﬁ‘ected, the shortest path tree remain unchanged. Otherwise,
changes”’ = {41, 0y,..., &1} on G, the dynamic shortest pathy, . descendants, and only the descendants of this edge in the
problem is to find the shortest paths frasmio all nodes in shortest path tree may be affected. For these vertices, some
each new graF’h after changg) of them will have increased distances, some of them will
In the following, D[v] denotes the distance of a vertexo g through an alternative path with the same distance (but
the sources, P[v] the parent ofs in the shortest path tree. A changed parent), while the rest will not be affected. In order

vertexv is called an affected vertex ib[v] or P[v] or both 4 classify the vertices into these three categories, we introduce
change in the new shortest path tree. An edge is called @g coloring idea in Frigioni’s algorithm [5]:

affected edge if it contains an affected vertex. (1) v is coloredwhite if neither D[v] nor P[v] needs to be

changed.
B. Weight Decrease (2) v is coloredpink if P[v] needs to be changed biltv]
remains the same.
Consider that the weight of eddé,) decreases t@,..,. (3) v is coloredred if D[v] increases.
Without loss of generality, assume thafi] < DI[7]. Itis not ¢ js not difficult to see that if a vertex is white or pink,
difficult to see thaw will not be affected by this change. They| jis descendants in the shortest path tree are white; if
dynamic algorithm starts with determining whethewill be s req, all its descendants are either red or pink. Therefore

affected by simply checking the inequality the coloring procedure is clear: we first determine whether

© is pink or red by checking whether there is an alternative
Dli] + wnew < DI[7]. (1)
1A priority queue is an abstract data type with the following access protocol:

. . . . only the highest-priority element can be accessed. Basic operations of a
If the 'nequa“ty does not hold, then this edge with thSriority queue include Enqueue (add a new item to the queue), Dequeue

decreased weight does not provide a shorter pathyfdhe (remove the item with the highest priority and return this item), Update
algorithm ends and the shortest path tree remains unchan%?l‘]‘.”ge the priority of one item in the queue), and Peek (obtain the value
If the i lity hold her | ff d i h the item with the highest priority). Standard implementations of a priority

the Iinequality holds, theni Is affected; Its new Shortest e e with different time complexities include array, link list, Binary heap,
path froms must go through edgg:, ©) and D[¢] reduces to and Fibonacci heap [19].

shortest path with the same distance fo¢note thato cannot A. Hypergraph and Hyperpath

be white due to the weight change of edgev) thatis on | ot/ pe a finite set andZ a family of subsets of . If for

its current shortest path); if such a path exists, then we colgf elements:; € E, the following conditions are satisfied:
© pink and the algorithm ends, otherwise we color it red and

put all its children in a priority queué/. The procedure then ei # 0, Ueier €i =V,
iterates for each vertex it/ according to an increasing ordery .o e couplefl — (V, E) is called a(undirected) hyper-

of the vertex dls_tances.) graph Each element € V is called avertexand each element
After the coloring process, we only need to deal with the red 1, 5 hyperedge
vertices. For each red vertex we initialize its distance with a weighted undirected hypergrajha tripleH = (V, E, w)
the distance of the shortest path through one of its non-rgdy, ., . £ {R* U {0}} being a nonnegative weight
neighbors and put in another priority queu&) (if no non- ,nction defined for each hyperedge i
red neighbor exists, we initialize it witho). After this, the In a hypergraph, a hyperpath is defined as follows.
procedure is similar to Step 2 in the Graph: Weight Decreasepefinition 1: A hyperpathbetween two vertices andwv is
algorithm: at each iteration, we extract the vertex at the t%\osequence of hyperedgés, 1, . .., em} such thatu € e,
of @ and update its neighbors adgl until @ is empty. v € ey, ande; Nejsq # 0 for i = 0,...,m — 1. A hyperpath
is simple if non-adjacent hyperedges in the path are non-
overlapping,.e.,e; Ne; = 0,Vj #4,i+ 1.
Let L. = {eo,...,em} be a hyperpath in a weighted
hypergraphH. We define the weight of.. as:

Graph: Weight Increase(, 0, wyew)-
Step0 (Update the graph)
w(W, V) ¢ Wnew
Stepl (Determine the affected vertex in(a, o)) o
T 4 argmine; o, {Dlql} w(Le) =Y w(e).
y < argmaxc ;. {Dlq]} i=0
if Ply] =« then

EnqueuéM, (y, D[y]))
Step 2 (Coloring Process)

=

a b~ wWN

B. Shortest Hyperpath and Relationship Tree

Given two verticesu and v, a natural question is to find
the shortest hyperpath (in terms of the path weight) froam

6 while NonEmpty(\/) to v. Since the weight function is nonnegative, it suffices to
7 (2, D[2]) + Dequeuel!) consider only simple hyperpaths. If the shortest hyperpath is
8 if 3 nonred q € V s.t. Dlg] +w(q, 2) = D[z] not simple, we can always generate a simple hyperpath without
9 then z is pink increasing the weight by deleting all the hyperedges between
10 elsez is red; Enqueud(, all z's children) two overlapping non-adjacent hyperedges.
11 end: end The dynamic shortest hyperpath problem can be similarly
Step3.a (Initialize the distance vector for red vertices) defined for a sequenc€ = {41,0,,...,4:} of hyperedge

changes. Hyperedge changes have the same four types as
edge changes in a graph: weight increase, weight decrease,

12 for each red vertex z do

13 if z has nononred neighbor - .) S .
14 then D[] « -+oo; P[2] < Null hyperedge insertion, and hypgredgg deletion. Similarly, weight
' increase and hyperedge deletion will be treated together, so are

15 else weight decrease and hyperedge insertion.

16 let u be thebest nonred neighbor of z In this paper, we consider the single-source shortest hy-

17 D[z] = Dlu] + w(u, 2); Plz] + u perpath problem: find the shortest hyperpaths from a given

18 EnqueuéQ, (z, D[z])) sources to all other vertices. The presentation of the paper

19 end; end;, end focuses on undirected hypergraphs. However, the two proposed
Step3.b: Step2 of Graph: Weight Decrease dynamic algorithms apply to directed hypergraphs with minor

] . _ modifications in their implementation details.
The worst-case time complexity for one edge change (eitherge|ow, we establish a basic property of shortest hyperpaths.

weight decreasing or increasing)@¥|d| log [6] +[|d]]), where | emma 1:Let L = {e1, ea, ..., e} be a shortest hyperpath
0] denotes the number of affected vertices #Ad the total from s c ¢; to 2 € ¢;. Then for any vertex € e; N eit1, the

number of both affected vertices and affected edges. hyperpathL, = {ey,es,...,e;} is a shortest hyperpath from
s to v. Furthermore, for any two verticag v € e; Ne;11 (if
[Il. DYNAMIC SHORTESTHYPERPATHPROBLEM there exist at least two vertices N e; 1), D[u] = D[v].
Proof: We will prove by contradiction. Assume that
We introduce some basic concepts of hypergraph [1] add = {ei,eq,...,e;} is not a shortest hyperpath far.

define the static and the dynamic shortest hyperpath probleifisen there exists a different hyperpdip = {e}, €5, ..., €} }
Some basic properties of the shortest hyperpaths are estaith w(L!) < w(L,). Then consider the hyperpatti =
lished and will be used in developing the dynamic algorithm@!, e, ..., e}, eit1,€i12,..., e}, we havew(L’) < w(L)
in subsequent sections. which contradicts the fact that is a shortest hyperpath to

z. This completes the proof for the first part of the lemmaA. Hyperedge Weight Decrease

Furthermore, for any two nodeswv € eiNe; 1, SinceL, isthe consider that the weight of a hyperedgedecreases to
shortest hyperpath for both verticeB[v] = w(L,) = D[u]. 4, Similar to the case for graphs, we know that the vertex
B 4 ¢ ¢ with D[z] = min,ee{D[v]} will not be affected. We

Next, we introduce the concept of relationship tree that {en check weather the other verticesdrare affected by

needed in the proposed dynamic shortest hyperpath algoritgAecking the inequality given in (1), and put all the affected

HE-DSP. Since two adjacent hyperedges in a hyperpath mattices into a priority queué). The rest of the procedure is

overlap at more than one vertex, the shortest hyperpaths frgjmilar to that for graphs, only when we update the distance of

s to all other vertices do not generally form a tree in thg vertex, we check all the hyperedges that contain this vertex.

original graph sense. For the development of the dynamic . 5

shortest hyperpath algorithms, we introduce the concept of HE-DSP: Weight Decreas€e, wye.).

relationship treeto indicate the parent-child relationship along ~ St€P0 (Update the hypergraph)

shortest hyperpaths. The concept can be easily explained in the w(e) ¢ Wnew o

example given in Fig 2. Lefey, e2} be a shortest hyperpath _ Step1 (Determine the affected vertices ire)

from s to v;. By Lemma 1,{e,} is a shortest hyperpath for 2 & ¢ argminc.{D[v]}

both v; and .. As illustrated in Fig 2, there aré possible 3 for eachv € ¢ such thatD[z] + wpew < D[v] do

relationship trees to indicate the parent-child relationship iff D[v] = D[2] + wnew; Plv] ¢ x; E[v] + ¢é
these shortest hyperpaths. We will show in Sec. IV that th@ Enqueué?), (v, D[v]))
choice of the relationship tree does not affect the correctne end .)
or performance of the proposed algorithm HE-DSP. Step2_(|terat|vely enqueue and update affected vertices)
7 while NonEmpty(Q) do
8 (z, D[z]) + DequeuéQ)
9 foreachec Est.zce
10 for eachv € e
11 if D[v] > D[z] + w(e) then
s s s s 12 Dv] + D(z)+w(e); Plv] + z; E[v] e
13 Enqueue or Updaté€), (v, D[v]))
vif vy vl v, oy Vo by vo 14 end, end; end, end
Theorem 1:If before the weight decreasd)[v] = d[v],
v3d Vg vsd ugs g vge Uy V3 E[v] and P[v] are correct for allv € V, then after the
weight decreasd)[v] = d’[v] and E[v] and P[v] are correctly
Fig. 2. Hyperpaths and the associated relationship trees. updated_
Proof: See Appendix A. |

Similar notations are used for dynamic shortest hyperpaéh

algorithms: D[v] denotes the distance of a vertexto the) _)
sources on the shortest hyperpattP[v] the parent ofv The coloring process in the graph case relies on the tree

in the chosen relationship tree associated with the shortgpicture of the shortest paths, which is no longer present in
hyperpaths. A new notation &[v], the hyperedge containingthe shortest hyp_erpaths. Our solution is to use a relationship
v and P[v] on the shortest hyperpathe(, the hyperedge that trge for the coloring process, and we prove the cqrrectpess of
leads tov from P[v] on the shortest hyperpath). When it ighls approach regardle_ss of the choice qf the relationship tree.
necessary to distinguish the shortest distance before and aftéronsider that the weight of a hyperedgecreases te;,c.,-
a weight changed[v] denotes the shortest distance befor'é'rStf we r_edefme the color of a vertexbased on the chosen
the changed’[v] the shortest distance after the change, afgiationship tree.
D[v] the actual value stored in the data structure during tHd) v is coloredwhite if d'[v] = d[v] while keeping the
execution of the algorithm. currentP[v] and Ev].

(2) wvis coloredpinkif d'[v] = d[v], but only possible through

a newP[v] or E[v] or both.
IV. HYPEREDGEBASED DYNAMIC SHORTESTPATH (3) v is coloredred if d'[v] < d[v].

ALGORITHM

Hyperedge Weight Increase

With the above modified definitions of colors, the same
In this section, we propose HE-DSP. It is an extension of ﬂ(]:é)lorm.g process as in the gr?ph case can be carried out using
o , ! —_“a relationship tree. The algorithm is given below.
dynamic Dijkstra’s algorithm to hypergraphs. The extension is
more complex than Gallo’s extension of the static Dijkstra’s HE-DSP: Weight Increas€é, wycq,).
algorithm, since the dynamic Dijkstra’s algorithm relies on the StepO (Update the hypergraph)
tree structure of the shortest paths, a structure no longer thete w(é) < wypew

for the shortest hyperpaths. Stepl (Determine the affected vertices i)

N

for eachwv € é s.t. E[v] = ¢ do
EnqueugM, (v, D[v]))

Step2 (Coloring process)

w

4 while NonEmpty(\/)

5 (z, D[z]) + Dequeuel/)

6 if 3 nonred ¢ € V s.t.de € E with ¢,z € e and
Dlg] + w(e) = D[z]

7 then z is pink; P[z] = ¢; E[z] =¢;

8 elsez is red; Enqueud(, all z’s children)

9 end; end
Step3.a (Initialize the distance vector for red vertices)

10 for each red vertexz do

11 if z has nononred neighbor

12 then D|[z] < 4o0; P[z] < Null

13 else

14 let u be thebest nonred neighbor of z
15 El2] « argmin -, .{w(e)}:

16 D[z] + D[u] + w(E[z]); P[z] + u;

17 EnqueuéQ, (z, D[z]))

18 end; end; end

Step3.b: Step2 of HE-DSP: Weight Decrease

Proof: First, for each shortest pathy, in G, we can
obtain a corresponding hyperpdthn H with the same weight
based on (2), therefore we have that

we(Ly) = w(L) > w(L*).

Then it suffices to show that there exists a path in G
such thatwe(Lg) < w(L*), which implies thatwe(L§) <
w(;(LG) < w(L*)

Assume thatL* = {eg,e1,...,ex—1} IS a shortest hyper-
edge path fromyg to v in H wherewvy € eg andvy, € ej_1.
Letv; €e,-1Ne; (i =1,2,...,k — 1) be one of the vertices
in the intersection of hyperedges_; and e;. Construct a
path L = {vg,v1,...,vr} in the graphG. For each edge
€; = {vi,vi+1} (Z =0,1, ,k —].), sinceé; C e;, it follows
from (2) that

we(€;) < wl(e;).

Thus,
k—1

S wle)) = w(L?),

=0

k-1
we(Le) = ch(éi) <

=0

The theorem below states the correctness of the algorithif: we(La) < w(L™). u

Theorem 2:If before the weight increasep[v] = d[v],

It follows from Theorem 3 that the shortest path in a general

E[v] and P[v] are correct for alb € V, then after the weight hypergraph can be obtained by applying Dijkstra’s algorithm

increase,D[v] = d'[v] and alsoE[v] and P[v] are correctly
updated.
Proof: See Appendix B. []

V. DIMENSION REDUCTION BASEDDYNAMIC SHORTEST
PATH ALGORITHM

to the underlying grapliz with weights modified as stated in
the theorem.
B. The Dynamic Case: DR-DSP

In the dynamic case, a sequen€e= {01,0d2,...,0;} Of
hyperedge changes in the hypergrdphresults in a sequence

In this section, we propose DR-DSP. When the dynam® edge changes in the underlying graph For each hyper-
problem degenerates to the static problem, DR-DSP leads tcelge changeé;, DR-DSP first updates the underlying graph
alternative algorithm for solving the static shortest hyperpath to locate all the changed edges causedibyin the next

problem.

A. The Static Case: DR-SP

step, DR-DSP updates the shortest path tree in the underlying
graphG.
Consider first the graph update. A change to a hyperedge

We first consider the static version of the algorithm (referred only affects those edges i&' that are subsets of, i.e.,
to as DR-SP), which captures the basic idea of dimensi@nhyperedge change is localized in the underlying graph

reduction.

Furthermore, since the weight of an edgé&iiis the minimum

The proposed DR-SP algorithm is based on the followingeight of all hyperedges containing it, not all edgegirthat

theorem in which we show that for a general hypergraph
the weightw(L*) of the shortest pati* of H is equal to
the shortest pathLy, of a weighted graphG derived from
H. Specifically, corresponding to every hyperedge H, G
contains a clique defined on the verticeseof

Theorem 3:Let H = (V, E,w) be a hypergraph, an@ =
(V, E) the underlying graph off where an edge ¢ E if
and only ifJe € E such that C e. For each edgé in G, its
weight wg(€) is defined as

min
{ecE: eDé}

)

Let L* and L{, be the shortest paths frome V tov € V in
H and G, respectively. Then we have that

wg(é) = w(e).

w(L*) = wg(LE)

are subsets oé will change weight. Based on these obser-
vations, we propose a special data structure and procedure
for updating the underlying grapfi without regenerating the
graph from scratch using Step 1 of DR-SP.

At the initialization stage of the algorithm, a priority queue
M., for each pair of verticegu,v) in the hypergraph is
established to store the weights of all hyperedges that contain
both v andv. When a change occurs to hyperedgell the
priority queuesi/,,,, associated with the pair of verticés, v)
that are contained ia are updated with the new weight ef
Thus, the top of these priority queues always maintain the
weight for edge(u,v) in the underlying graphG for each
(u,v). Below is a pseudo code implementation of the proposed
procedure.

Graph Update(é, wpew)-

1 foreachu,vee¢ VI. TIME COMPLEXITY ANALYSIS

2 Update(.,., < & Wnew >); We analyze the time complexity of the two proposed dy-
3 “_”wv «—Peek(1,.); namic algorithms. We show that for different scenarios, each
4 end algorithm has its own advantage. We also consider the static

After the underlying grapli is updated, we are now facingc@se and show that the static version of DR-DSP has the same

a dynamic shortest path problem in a graph. However, sinc€@mplexity as Gallo's algorithm for a general hypergraph and

single hyperedge change can result in multiple edge chané@¥er complexity for a simplicial complex.

in G, we need to handle a batch problem. While existinlg

batch algorithms and iterative single-change algorithms for

graphs can be directly applied here, we show that the batcH3iven a hypergrapltl = (V, E, w), letn = |V| denote the

problem we have at hand has two unique properties that da#mber of vertices inH, and ® = > _ |e|> where|e] is

be exploited to improve the efficiency of the algorithm. ~ the cardinality ofe. For a simplicial complex, letn be the
Property 1: The edge changes ii caused by a hyperedgenumber of facets, and the maximum degree of the facets.

change are either all weight decreases or all weight increasestheorem 4:The time complexities of Gallor’s algorithm
Property 2: All changed edges it caused by a hyperedgeand DR-SP for general hypergraphs and simplicial complexes

The Static Shortest Hyperpath Problem

change belong to a clique if. are as follows.
C. Hyperedge Weight Decrease Algorithm | General Hypergraph| Simplicial Complex
] Gallo O(nlogn + ®) O(nlogn + d?2%m)
If the weight of hyperedge: decreases tQu,c, , by DR-SP O(nlogn + @) O(nlogn + d29m)

Theorem 3 and Property 1, there are (possibly) several edge-
weight decreases in the underlying gragh Therefore sim- Proof: The time complexity of DR-SP mainly comes

llar to HE-DSP, there is at least one unaffected nade- from Steps 1 and 2. Step 2 is essentially applying Dijkstra’s
argmin,e.{D[v]}. By Property 2, these affected edges arglgorithm to a graph wittn vertices andn edges wheren is

contained in a clique derived from the changed hypered%ﬁé number of edges in the underlying graghThe running

therefore it is sufficient to determine the distance of eve yme is thusO(n log 1 +). An implementation of Step 1 is

nodew (other thanz) in the original changed hyperedge to obtain the edge weight¢(¢) based on (2). Therefore the

by checkingD[z] + wpe < D[v]. And we can initialize the . ; o :
L . : ime complexity for Step 1i©)(3 . [e]*), i.e., O(®). With
priority queue with those nodes whose weight decreases. Aﬁﬁzerupper bounded by (since for eache € &, there are at

that, the procedure is similar to that in the graph case. .) .
P ure 1s simi I graph cas most |e|(le] — 1)/2 edges inG), we arrive at the total time

DR-DSP: Weight Decreasé’, wyeqw)- complexity of DRSP.
StepO (Update the hypergraph andG) For Gallo’s Algorithm, similar to Dijkstra’s algorithm, the
1 w(é) + wpew time complexity is mainly in updating the neighbors of the
2 Graph Update(é, wnew) non-fixed vertexz with the minimal distanceD|z]. For each
Stepl of HE-DSP: Weight Decrease z, the algorithm scans all the hyperedges containingror
Step2 of Graph: Weight Decrease each pair of verticesu, v) € e, e is scanned twice. Therefore
the total number of such operations & = >, |e*.
D. Hyperedge Weight Increase Also, extractingz from the priority queue implemented by a

: . _ fibonacci heap take®(logn) time. The total time complexity
If the weight of hyperedge increases tauv,,..,, by Theo of Gallos algorithm thus follows.

rem 3 and Property 1, there are (possibly) several edge-weigﬁlt:Or a simplicial complexd — O(d22¢m), the complexity

increases in the underlying graph. Similar to the single- , . I
change case in graph, there s at least one unatfected ndU@STS BRI e KURCe M0 AR SR ortion
x = argmin,..{D[v]}. Then another node c ¢ is affected property tha g pera

’ n a simplicial complex, we can use a top-down scheme in

only if E[v] = ¢, i.e,, ¢ is on its shortest hyperpath. We us . : .
all such nodes to initialize the priority queué. The rest is tep 1 of DR-SP to.calcullate the weight;(s) inductively
with respect to the dimension of a facet as follows:

similar to the procedure of Graph: Weight Increase.

DR-DSP: Weight Increasée, wre.). we () = minfw(s), {fwa(s")] s* > s and dinfs') = i + 1}},

Step0 (Update the hypergraph andc) wherewg (s') = w(s') for the facets’. The time complexity
1 w(é) ¢ Wnew) for Step 1 can then be improved. Because gaatimensional
2 Graph Update(e, wnew) face is associated witti — i comparisons. Thus, the running

Stepl of HE-DSP: Weight Increase time of Step 1 for eack-dimensional facet is given by

Step2 of Graph: Weight Increase i

Step3.a of Graph: Weight Increase .

b o e (H1)(d =) = O(d2").

Step3.b of Graph: Weight Increase

i=1

Therefore the time complexity for Step 1 @(d2%m). The VII. SIMULATION RESULTS

total time complexity thus follows. [] . . : .
plexity We present simulation results on the running time of the

proposed dynamic shortest hyperpath algorithms. We test the
B. The Dynamic Shortest Hyperpath Problem proposed algorithms on hypergraphs generated from a random
. geometric model as well as those generated by the Enron email
Given a hypergraphil = (V,E,w) and a change 10 yas et All simulation code is compiled and run on the same
hyperedger, let || denote the number of affected verticeshiq, equipped with a 3.0GHz i7-920XM Mobile Processor.
l6]] the number of affected hyperedges pli#3, [0s| =
Yech.c s affected ¢|*, @0 [|6] the number of affected edgesa Random Geometric Hypergraph
in the underlying graph plug|.])) _
Theorem 5:The time complexities of HE-DSP and DR- We first consider a random geometric hypergraph model in

DSP for the fully dynamic shortest path problem in a gener4fich 7 nodes are uniformly distributed in an<a square. Al
hyperpath are as follows. nodes within a circle with radius form a hyperedge (circles

are centered on A x h grid). The weight of each hyperedge
is given by the average distance between all pairs of vertices

Algorithm Time Complexity :
HE-DSP O] 1o [3] + [3a) of this hyperedge.
DR-DSP | O(]8]1og 3] + I3[+ le|? log m) A sequence of changes are then generated and the proposed

dynamic algorithms are employed to maintain all the shortest
hyperpaths from the source located at a corner of the
Proof: For HE-DSP: Weight Decrease, the dominating x ¢ square. Each change can be a hyperedge insertion (with
part is Step 2. In Step 2, there are tdt@literations. In each probabilityp;), a hyperedge deletion (with probabiliy), or
iteration, the algorithm first dequeues one nodérom M g weight change (with probability—p; —pp) with new weight
which takesO(log [d]) time. Then the algorithm updates allchosen uniformly ifw,,in, wmas). In the case of a hyperedge
of 2’s neighbors by scanning all the hyperedges containing deletion or a weight change, the hyperedge to be deleted or to
Each affected hyperedgecan be scanned at mogl(le| — be assigned with a new weight is chosen according to the
1) = O([e|?) times. Therefore the time spent on updates for alljo models detailed below. Hyperedge insertions are only
iterations isO(|ds|). The total time complexity of HE-DSP: realized when there are hyperedges that have been deleted,
Weight Decrease i€)(|6| log |§| 4 [0 |). For HE-DSP: Weight and a randomly chosen one is inserted back. This ensures that
Increase, similar to the above analysis, the time complexyl hyperedges satisfy the geometric property determined by
for the dominating part (Step 2, Step 3.a and Step 3.b);isat all time. It also models the practical scenario where a
O(|6]1og|d] 4 |da]). The total time complexity of HE-DSP: proken link is repaired.
Weight Increase i©)(|d| log [d]+|de|). The result thus follows. |n selecting a hyperedge for deletion or weight change,
For DR-DSP: Weight Decrease, the total time spent ame consider two different models: the random change model
Graph Update procedure i9(|e|*logm). In Step 2, there and the targeted change model. In the former, the hyperedge
are|d| iterations; in each iteratio®(log |d]) time is spent to is randomly and uniformly chosen among all hyperedges.
dequeuez from M. Time spent on updating neighbors ovem the latter, it is randomly and uniformly chosen from the
all iterations isO(||0]). Therefore the total time complexity iscurrent shortest hyperpaths. This models the scenarios where
O(|6]1log |6]+]|6+|e|* log m). For DR-DSP: Weight Increase, hyperedges in the shortest hyperpaths are more prone to
Step 2, Step 3.a and Step 3.b takgd|log|d|+|d]|) (similar changes due to attacks, frequent use, or higher priority in
to the analysis for graphs). The total time complexity thusaintenance and upgrade.
follows. u In Fig. 3, we show the simulation results on the running
From Theorem 5 we see that & is small and|e| is time of the two proposed algorithms under a sequence of
large, HE-DSP performs better, since in DR-DSP, the upddte* changes. We see that HE-DSP has lower complexity in
of the underlying graph has to be done regardless whetmetworks with random topological and weight changes (Fig. 3-
there are affected vertices. Thus in a sequence of hyperetdgé), whereas DR-DSP should be preferred in networks
changes, if only a small fraction of them actually have affectedth targeted changes (Fig. 3-Right). This partition of the
nodes, then HE-DSP will outperform DR-DSP. On the othepplication space can be explained from the structures of these
hind, if § is large, because usuallys| > |d]|, then DR- two algorithms. Under the random change model, a large
DSP will outperform HE-DSP. Consider the extreme exampfeaction of changes do not result in changes in the current
where every valid hyperedge exists, all nodes are affected aftbrtest hyperpaths. Such changes lead to little computation
the changed hyperedge containsvertices. Then|é| = n, in maintaining the shortest hyperpaths for both algorithms,
65| = O(n?2"), ||6]] = O(n?), le| = n, m = O(2"). The but requires about the same amount of computation in the
time complexity of HE-DSP i€)(nlogn+n?2") = O(n?2") Graph-Update step of DR-DSP for maintaining the underlying
while the time complexity of DR-DSP i©(n?). We see that graph. On the other hand, under the targeted change model,
the time complexity of DR-DSP can be much lower than thail hyperedge deletions and weight changes affect the shortest
of HE-DSP. hyperpaths. Updating the shortest hyperpaths can be done

more efficiently in DR-DSP since it works on the underlying 25
graph with a much smaller number of edges.

1000)
151

2 .- 2 0
- E

o
q
Average Distance from CEO

200
051

4 6 5 2 4 6
number of hyperedge changes «10' number of hyperedge changes

Fig. 3. The average running time. Left: the random change méight: ®" President VP MD Manager Director Trader Employee

the targeted change modet (= 1000, a = 1000, » = /1000, h = 1,

Pr=%.PD = %, Wmin = 10, wmax = 20, the average is taken ov&n

random hypergraphs). Fig. 4. The average distance from the CEO to others at diffgresitions.

B. Enron Email Data Set contains only individual vertices. We then consider each email

In this example, we consider the application of the shortegironologically. Each email either adds a new hyperedge or
hyperpath algorithms in finding the most important actor in @ecrease the weight of an existing hyperedge (due to the
social network. We consider the Enron email data set and d@ereased number of appearances of this hyperedge). The two
the same hypergraph generation model as in [20]. SpecificaFN/Pposed algorithms are employed to maintain the shortest
each person is a vertex of the hypergraph, and the sender BBerpaths rooted at the CEO after each change. The running
recipients of every email form a hyperedge. Our objective is {gne is given in Fig. 5, which shows the lower complexity
identify the most important person measured by the closen@§dPR-DSP. The reason is that a large fraction of hyperedge
centrality index (., the total weight of the shortest hyperpath§hanges result in changes in the shortest hyperpaths.
from this person to all the other persons). The first step is to

assign weight to each hyperedge that reflects “distance”. While 5 :
there is no universally accepted way of measuring distance in 45—
a social network observed through email exchanges, certain ar

general rules apply. First, a direct email exchange between
two persons indicates a stronger tie than an email sent to
a large group. Thus, the weight of an hyperedge should be
an increasing function of the cardinality of this hyperedge.
Second, more frequent email exchange among a given group of
people shows stronger ties. Thus, the weight of an hyperedge
should be decreasing with the number of times that this 0
hyperedge appears in the email data set. Considering these " number o hyperedge changes x10°
two general rules, we adopt the following weight function:

251

average running time (s)
~

A Fig. 5. The average running time for the Enron data set={ 0.6, the
w(e) — (/|e|)“ (3) averageis taken ovei0 monte carlo runs).

where |e| is the cardinality of the hyperedge « is the
parameter measuring how fast the weight decreases with the VIIl. CONCLUSION
numberl of times that this hyperedge appears in the data setWe have presented, to our best knowledge, the first study
We can then apply DR-SP on the resulting (static) hypewf the fully dynamic shortest path problem in a general hyper-
graph to find the shortest hyperpaths rooted at each verggaph. We have developed two dynamic algorithms for finding
and compute this vertex’s closeness centrality index. With ted maintaining the shortest hyperpaths. These two algorithms
weight function given in (3) using = 0.6, the identified most complement each other with each one preferred in different
important actor is the CEO of Enron. The average distantypes of hypergraphs and network dynamics, as illustrated in
(along the shortest hyperpath) from the CEO to the oth#re time complexity analysis and simulation experiments. We
persons at various positions is shown in Fig. 4. We obserkhiave discussed and studied via experiments over a real data
that in general, the higher the position, the shorter the distanset the potential applications of the dynamic shortest hyperpath
These results demonstrate that the adopted hypergraph mgueblem in social and communication networks.
and weight function capture the essence of the problem.
Next, we construct a dynamic hypergraph sequence based
on the Enron data set. At the beginning, the hypergraphThe proof is based on the following three lemmas.

APPENDIXA: PROOF OFTHEOREM 1

10

Lemma 2:Let 2 = argmin,..{d[v]}, thend[z] = d'[z] and Then based on the fact that distances of the dequeued vertices
d'[z] = min,ee{d'[v]}. are monotonically increasing with the order of the dequeueing
Proof: Proof by contradiction. Assume thdt[x] < d[z], as shown at the beginning of the proaef,cannot be any

thenz has to use on its new shortest hyperpath. Since weertex dequeued after;, ;. Sincez; 1 ¢ ¢, it is also clear
consider only simple hyperpaths andt ¢, we haveE[x] = é. that w cannot be an unaffected vertex(otherwise,; will
Therefore its pareny = P[v] cannot use¢ on its shortest be unaffected, which contradicts Lemma 3). We thus have
hyperpath, which implies that the shortest distance tioes u € {zi,...,2}. Let w = z;. Then whenz; is dequeued ,
not changed[y] = d'[y]. Given thaty is the parent oft on its DJ[z;41] will be updated to the shortest distan€éz;; 1] due
new shortest hyperpath, we hadp] = d'[y] < d'[z] < d][z] to the induction hypothesis dD[z;] = d'[z;]. This completes
which contradicts to the definition aof. the proof. |

For the second statement, assume there existsé such Based on Lemma 3 and 4, the shortest distances of all affected
that d'[z] < d'[z]. Based on the definition of and the vertices will be updated correctly. Based on Lemma 3, all
hypothetical assumptioni[z] > d[z] = d'[z] > d'[z]. It thus unaffected vertices will not be enqueued, and their distances
follows thatz's shortest hyperpath changes dfit] = ¢ inthe remain the same. It is not difficulty to see from the algorithm
new shortest hyperpath. Follow the same line of arguments byt P[v] and E[v] are also correctly maintained for all
considering the parent af we arrive at the same contradiction

in terms of the definition of:. u APPENDIX B: PROOF OFTHEOREM 2
Lemma 3:For any vertexv, v is enqueued intd) if and]]
only if d'[v] < d[v]. We first show the correctness of the coloring process as

Proof: Consider first that is enqueued int6). From the 9iven in the following lemma.
algorithm, this can only happen if there exists a neighbor Lemma 5:The coloring process correctly colors all the
and a hyperedge > v, z such thatD|z] + w(e) < D[v]. We affected vertices.
thus haved[v] > D[v] > Dl[z] + w(e) > d'[v] (note that at Proof: We first state the following simple facts without
any time,d[v] > D[v] > d'[v], which can be easily seen fromproof: given a relationship tree, after the hyperedge weight
the procedure of the a|gorithm)_ increase, (1) ifv is plnk or white, then all its descendent in

We now prove the converse. Assume tl?lh[tl)] < d[’U] this relationship tree are white; (2) ifais red, then all its
Let p = {e1,e2,...,€i, ¢ €i41,...,€} bev’s new shortest children in the relationship tree are either pink or red; (3) if a

hyperpath. There existg; 1 € é N e;41 such thatd[u;,,] < v is affected, eithew € ¢ or P[v] is red. These facts can be
d[u;11]. In Step 1 of the algorithmy,,, is enqueued. Simi- directly obtained from the definition of the color. It is also easy
larly, there existsi; o € e;1 Nejpo With d'[u;o] < dus,,]. 1O See that vertices are dequeued frédfmin a nondecreasing
Thenu; - will be enqueued in Step 2 of the algorithm whe@rder of their current distancB[]. This is because each time
u;+1 is dequeued if it has not been enqueued before thatvertexz is dequeued froml/, the possible new vertices to
Repeating this line of argument, we conclude that there exitg enqueued intd/ arez's children with distances no smaller
w € e Nep with d'[u;] < dlu;] andw; is enqueued into thanD[z].
Q. Thenv will be enqueued when; is dequeued if it is not ~ Then, the proof of the lemma has two parts: first we prove
enqueued already. m that all affected vertices are enqueued Qg then we prove
Lemma 4:For eachv dequeued fron®), D[v] = d'[v]. by induction that only affected vertices are enqueued ito
Proof: We first show that ifu is dequeued before, then and their colors are correctly identified.
D[u] < DIv] at the instants when they are dequeued. We proveWe prove the first part by contradiction. Assume that there
this by induction. The initial condition holds trivially. Thenexists an affected vertex that is not enqueued intd/. It is
assume it is true for the firdgt dequeued vertices,,..., 2. easy to see that ¢ ¢ because all the affected verticesdn
Consider the(l + 1)th dequeued vertex; ;. At the instant are enqueued in Step 1. Based on the third fact stated above,
when z; is dequeued, ifD[z,,1] is updated based oW[z] Pv] is red. Based on the hypothesB[v] is not enqueued
in Step 2, thenD[z;] < D[z4+1] even after the update. If, (otherwise,v will be enqueued in Step 2). Continue this line
on the other handD|z,4] is not updated at this instant,of arguments, we eventually reach the root of the relationship
then D[z] < D[z11] given that the dequeued vertex has thgee and arrive at the contradiction that the sourée red.
smallest distance. We prove the second part by induction. It is easy to see that
Next, we prove the lemma by induction. From Step 1 of thall the vertices initially enqueued inttl are affected vertices.
algorithm, all the affected verticesin ¢ will be dequeued first It remains to show that the first vertex dequeued from
with E[v] = ¢, P[v] = =, andD[v] = d'[x] + w(¢é). Based on M is colored (pink or red) correctly. To show that, we need
Lemma 2,D[v] < d'[u] +w(¢) for anyu € é. It thus follows to establish that the algorithm correctly determines whether
that the hyperpath te throughz and ¢ is the shortest one there is an alternative shortest hyperpathfovith the same

with D[v] = d'[v]. distance,i.e., d[z1] = d'[z1]. The key here is to show that
Assume forzy,...,z, D[z;] = d'[z] are satisfied for all checking the currently non-red neighbors (which may become
1 =1,...,1. Consider thel + 1)th dequeued vertex; ¢ ¢. red in the future) ok, will not lead to a false alternative path.

Let u = P[z;41] be its parent in the new shortest hyperpatfThis follows from the fact that; has the smallest distané# -]

11

among all affected vertices (which belong to the set of verticgss] S. Wasserman and K. FausSpocial Network Analysis: Methods and

consisting of the affected vertices énand their descendents). Applications New York: Cambridge University Press, 1997.

. [19] N.B. Dale, C++ Plus Data StructuresJones and Bartlett Publishers
Next, assume that vertices, 22, .. ., z; dequeued from\/ Inc.. 2006,

are all affected vertices and are correctly colored. Consider {a€] D.M.Y. Park, C.E. Priebe, D.J. Marchette*Scan statistics on enron
next dequeued vertex ;. Itis an affected vertex because itis ~ hypergraphs,” ininterface 2008.
either enqueued in Step 1 wiffijv] = ¢ or enqueued in Step 2
with a red parent. To show that,; will be colored correctly,
we use a similar argument by showing that the currently non-
red neighbors of;; will not give a false alternative path.
The latter follows from the fact that all affected vertices will
be enqueued and those dequeued after have distances no
smaller thanD|z;+1]. This completes the induction. [|
We now show thatD[v], P[v] and E[v] are correctly
maintained for allv. For each red vertex, its distance is
set based on the current shortest distance from a non-red
neighbor in Step 3.a. The rest of the algorithm is essentially
Gallo’s extension of Dijkastra’s algorithm with the current
initial distance. The correctness of the algorithm thus follows.
It is not difficult to see thaP[-] and E[-] are correctly updated
for both red and pink vertices.

REFERENCES

[1] C. Berge,Graphs and hypergraphs North-Holland Pub. Co., 1976.

[2] J. Kleinberg and E. Tardo®lgorithm Design Boston, MA: Addison
Wesley, 2005.

[3] D. Z. Chen, “Developing algorithms and software for geometric path
planning problems,ACM Computing Surveys/ol. 28, no. 4es, Dec.
1996.

[4] G. Ramalingam and T. Reps, “On the computational complexity of
dynamic graph problemsTheoretical Computer Scienceol. 158, no.
1-2, pp. 233-277, 1996.

[5] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully dynamic
algorithms for maintaining shortest paths treelgurnal of Algorithms
vol. 34, no. 2, pp. 251-281, 2000.

[6] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Semidynamic
algorithms for maintaining single-source shortest path tre®lgbrith-
mica vol. 22, no. 3, pp. 250-274, 1998.

[7] P. Narvaez, K. Siu, and H. Tzeng, “New dynamic algorithms for shortest
path tree computationfEEE/ACM Transactions on Networkingol. 8,
no. 6, pp. 734-746, 2000.

[8] G. Ramalingam and T. Reps, “An incremental algorithm for a general-
ization of the shortest-path problemJ’ Algorithms vol. 21, no. 2, pp.
267-305, 1996.

[9] R. Bauer and D. Wagner, “Batch dynamic single-source shortest-path
algorithms: An experimental studyZxperimental Algorithmspp. 51—

62, 2009.

[10] S. Taoka, D. Takafuji, T. Iguchi, and T. Watanabe, “Performance
comparison of algorithms for the dynamic shortest path probl&#BCE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciencewol. 90, no. 4, p. 847, 2007.

[11] D. E. Knuth, “A generalization of dijkstra’s algorithm nformation
Processing Lettersvol. 6, no. 1, pp. 177-201, February 1977.

[12] G. Gallo, G. Longo, S. Nguyen, and S. Pallottino, “Directed hypergraphs
and applications,Discrete Applied Mathematicol. 42, no. 2-3, pp.
177-201, April 1993.

[13] G. Ausiello, et al, “Dynamic maintenance of directed hypergraphs,”
Theoretical Computer Scienceol. 72, no. 2-3, pp. 97-117, 1990.

[14] G. Ausiello, G. Italiano, and U. NannQptimal traversal of directed
hypergraphs International Computer Science Institute, 1992.

[15] S. Biwas, R. Morris, “Exor: Opportunistic multi-hop routing for wireless
networks,”ACM SIGCOMM Computer Communication Revieal. 35,
no. 4, pp. 133-144, 2005.

[16] M. Zorzi and R. Rao, “Geographic random forwarding (geraf) for ad
hoc and sensor networks: multihop performand&EE Transactions
on Mobile Computingpp. 337-348, 2003.

[17] S. Chachulski, M. Jennings, S. Katti, and D. Katabli, “Trading structure
for randomness in wireless opportunistic routingCM SIGCOMM
Computer Communication Reviewol. 37, no. 4, Oct. 2007.

